This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and [...]
This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essential[...]
The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann-Roch-Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott-Chern cohomology, which is a refinement for complex manifolds of de Rham cohomo[...]